HTC SERIES

HTC-4

2 HEAT/2 COOL TEMPERATURE CONTROLLER

The HTC-4 temperature controller is primarily designed for the control of 2 Heat and 2 Cool air-conditioning units. All output relays are voltage free, permitting use on either 240 V or 24 Volt circuitry.

Stage switch on points are individually adjustable with their ON/OFF status displayed via LED indicators.

The **HTC-4** controller is ideally suited for DIN rail mounting in a switchboard, or directly inside the A/C unit if required.

Features

Australian made and designed.	
Power Supply can be either 24v or 240v A.C dve®	
10 AMP (resistive) Potential free relay contacts.	
L.E.D Indication of all outputs.	
Various remote sensor options available.	
Mounts in most M.C.B enclosures.	
Compatibility to package AC units and Heat Pumps.	

5 Phillips Street Thebarton SA 5031 ph: (08) 82442844 fax (08) 82442955 sales@automatedcontrols.com.au **HTC-4 Technical Specifications**

Power supply 24VAC or 240VAC

Power consumption 240 volts 7 VA

Power consumption 24 volts 1 VA

Heating and Cooling relay outputs 240VAC 10 amp resistive

3 amp inductive

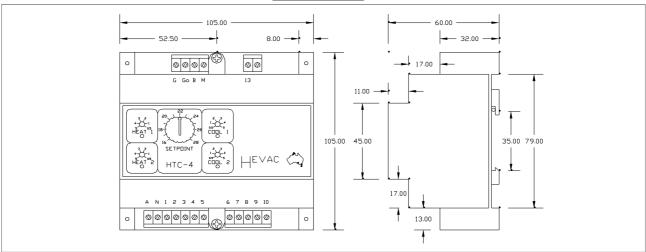
Temperature range (Factory Set to 22oC) 16 to 28 Degrees Centigrade

Switching differential for STAGE 1 0.3 Degrees Centigrade (NON-Adjustable)

Switching differential for STAGE 2 0.7 Degrees Centigrade (NON-Adjustable)

Stage start point adjustment range 0.5 to 5.0 Degrees Celsius (From Setpoint)

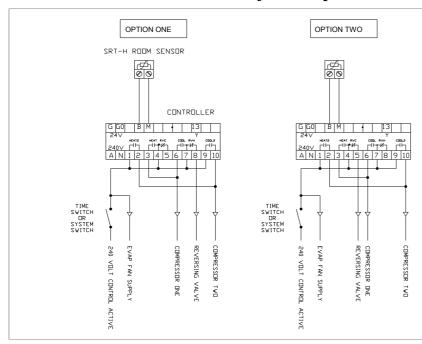
Stage start point (Factory Settings) Stage 1 = 1.0 oC Stage 2 = 2.0 oC


Output indication Green LED for Cooling

Red LED for Heating

Mounting method 35mm DIN rail (Not supplied)

Dimensions


ALL DIMENSIONS IN MILLIMETERS

Terminal Designations

G	24 VOLT AC SUPPLY ACTIVE	3	HEATING STAGE 1 OUTPUT
Go	24 VOLT AC SUPPLY GROUND REFERENCE	4	(HEATING STAGE 1 & R/V FOR COOL) COMMON
В	SENSOR INPUT	5	REVERSING VALVE FOR COOLING OUTPUT
M	SENSOR INPUT COMMON	6	COOLING STAGE 1 OUTPUT
13	Y SIGNAL OUTPUT	7	(COOLING STAGE 1 & R/V FOR HEAT) COMMON
A & N	240 VOLT AC SUPPLY	8	REVERSING VALVE FOR HEATING OUTPUT
1	HEAT STAGE 2 COMMON	9	COOLING STAGE 2 COMMON
2	HEATING STAGE 2 OUTPUT	10	COOLING STAGE 2 OUTPUT

HTC-4 Electrical Schematics for Compressor Reversing Valve Type A/C Units

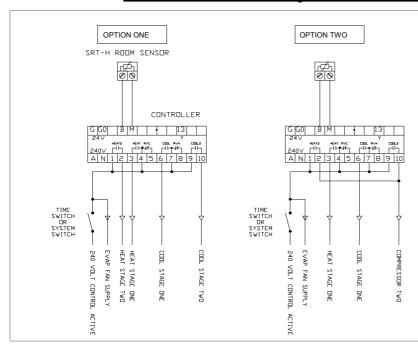
TECHNICAL NOTES

Select the option that suits the specific requirements of the Air Conditioning Unit.

Option 1

Reversing Valve Energizes on a HEATING CALL.

Option 2


Reversing Valve Energizes on a COOLING CALL.

Supply Voltage

The Controller requires either a 240 Volt AC or 24 Volt AC Supply.

(Use ONE Supply Voltage Only)

Electrical Schematics for Heat / Cool Type A/C Units

TECHNICAL NOTES

Select the option that suits the specific requirements of the Air Conditioning Unit.

Option 1

Typical for A/C Units Labeled HEAT / COOL

Option 2

Typical for A/C Units Labeled HEAT / COOL / COMPRESSOR Such as APAC Units.

Supply Voltage

The Controller requires either a 240 Volt AC or 24 Volt AC Supply.

(Use **ONE** Supply Voltage Only)

Quick Test Information

All HEVAC Controllers are Factory Calibrated and Pre-set to Industry Standard Defaults prior to dispatch. If you require further information on these Settings please Refer to the Technical Specifications Page.

To quickly confirm that a controller is wired to the correct sensor and to TEST for Heating & Cooling Changeover the following procedure can be carried out.

STEP 1: Dial setpoint up or down until you do not have a Heating or Cooling call. (ie Dead band Position)

STEP 2: Open circuit the sensor wires at the Sensor. The controller should go into full COOLING Mode.

STEP 3: Short circuit the sensor wires at the Sensor. The controller should go into full HEATING Mode.